欧美日韩在线成人免费-欧美日韩在线成人看片a-欧美日韩在线不卡-欧美日韩在线播放-自拍偷拍三级-自拍偷拍欧美亚洲

網(wǎng)絡(luò)消費網(wǎng) >  綜合 > > 正文
全球熱資訊!「AI教父」萬字采訪實錄:ChatGPT和AI的過去、當(dāng)下與未來
時間:2023-05-03 06:52:18


(資料圖片僅供參考)

大語言模型
將改變?nèi)祟?
Hinton 對人工智能領(lǐng)域的發(fā)展所帶來的風(fēng)險感到擔(dān)憂,并為人類敲響警鐘。
被譽為「深度學(xué)習(xí)教父」的 Geoffrey Hinton 是深度神經(jīng)網(wǎng)絡(luò)技術(shù)的奠基人之一,對人工智能的發(fā)展做出了重要貢獻,曾獲得過計算機領(lǐng)域的最高榮譽「圖靈獎」。
Geoffrey Hinton 在 2013 年加入 Google,擔(dān)任 Google 的工程師,領(lǐng)導(dǎo)開發(fā)了一系列 AI 領(lǐng)域的核心技術(shù)。
在 2023 年 3 月初的一場采訪上,Geoffrey Hinton 曾就 AI 的發(fā)展做了詳細(xì)的解讀,完整地闡述了他對大語言模型的看法和憂慮。整個采訪全長 40 分鐘,相信在你看完后會對 AI 有更深的了解。
采訪:
https://www.youtube.com/watch?v=qpoRO378qRY
出品:Web3 天空之城 x 愛范兒
劃重點:
1. ChatGPT 實現(xiàn)智能的途徑和人類大腦并不一樣
2. 20 年或更短時間內(nèi)我們會構(gòu)建出 AGI(通用型人工智能)
3. 當(dāng)我們完成對大模型的訓(xùn)練后,未來像 ChatGPT 這樣的程序可以在非常低功耗的芯片上運行
4. AI 有可能會傷害人類,美國軍方計劃將這項技術(shù)應(yīng)用于戰(zhàn)爭的一些想法令人做嘔
5. AI 普及后,人們將從事更有創(chuàng)造性的工作,而減少例行工作?
Q:CBS 主持人 Brook Silva-BragaA:Geoffrey Hinton
Q:您如何描述當(dāng)前 AI 機器學(xué)習(xí)領(lǐng)域的時刻?
A:我認(rèn)為這是一個關(guān)鍵時刻。ChatGPT 表明,這些大型語言模型可以做一些令人驚奇的事情。普通公眾突然開始關(guān)注這個領(lǐng)域,因為微軟發(fā)布了一些產(chǎn)品,他們突然意識到了大公司在過去五年里所知道的東西。
Q:你第一次使用 ChatGPT 時的想法是什么?
A:在 ChatGPT 前,我已經(jīng)使用了許多類似的東西,所以 ChatGPT 并沒有讓我感到驚訝。
GPT-2(這是早期的一種語言模型)曾讓我驚訝,Google 的一個模型也讓我驚訝,它實際上可以解釋為什么一個笑話很好笑。它用自然語言告訴你為什么一個笑話很好笑。當(dāng)然,并非所有笑話都可以,但對于很多笑話,它都可以告訴你為什么它們好笑。
Q:如果 ChatGPT 并不那么令人驚訝或令人印象深刻,那么您對公眾對它的反應(yīng)感到驚訝嗎?因為反應(yīng)很大。
A:是的,我認(rèn)為每個人都有點驚訝于反應(yīng)如此之大。這是最快增長的應(yīng)用程序。也許我們不應(yīng)該感到驚訝,但研究人員已經(jīng)習(xí)慣于這些東西實際上是有效的。
Q:你在 AI 領(lǐng)域一直處于領(lǐng)先地位,半個世紀(jì)都領(lǐng)先于其他人,對嗎?
A:其實不然。在 AI 領(lǐng)域,有兩種思路。一種是主流 AI,另一種是關(guān)于神經(jīng)網(wǎng)絡(luò)的。主流 AI 認(rèn)為,AI 是關(guān)于推理和邏輯的,而神經(jīng)網(wǎng)絡(luò)則認(rèn)為,我們最好研究生物學(xué),因為那些才是真正有效的東西。
所以,主流 AI 基于推理和邏輯制定理論,而我們基于神經(jīng)元之間的連接變化來學(xué)習(xí)制定理論。從長遠來看,我們?nèi)〉昧顺晒Γ唐趦?nèi)看起來有點無望。
Q:回顧過去,了解你現(xiàn)在所知道的,你認(rèn)為當(dāng)時你是否可以說服人們?
A:我當(dāng)時可以說,但那并不能說服人們。我可以說,神經(jīng)網(wǎng)絡(luò)在 20 世紀(jì) 80 年代沒有真正奏效的唯一原因是計算機運行速度不夠快,數(shù)據(jù)集不夠大。
然而,在 80 年代,一個重要的問題是,一個擁有大量神經(jīng)元的大型神經(jīng)網(wǎng)絡(luò),計算節(jié)點和它們之間的連接,僅通過改變連接的強度,從數(shù)據(jù)中學(xué)習(xí),而沒有先驗知識,這是否可行?主流 AI 的人認(rèn)為這完全荒謬。 盡管這聽起來有點荒謬,但它確實有效。
Q:您是如何知道或為什么相信這種方法會奏效的?
A:因為大腦就是這樣。你必須解釋我們是如何做到這些事情的,以及我們是如何做到那些我們沒有進化出來的事情的,比如閱讀。
閱讀對我們來說是非常新近的,我們沒有足夠的進化時間來適應(yīng)它。但我們可以學(xué)會閱讀,我們可以學(xué)會數(shù)學(xué)。所以一定有一種在這些神經(jīng)網(wǎng)絡(luò)中學(xué)習(xí)的方法。
Q:昨天,曾與您共事的 Nick 告訴我們,您并不是真正對創(chuàng)建 AI 感興趣,您的核心興趣是理解大腦是如何工作的。
A:是的,我真的想了解大腦是如何工作的。顯然,如果你關(guān)于大腦工作原理的錯誤理論帶來了好的技術(shù),你可以利用這一點來獲得資助。但我真的想知道大腦是如何工作的。 我認(rèn)為目前人工神經(jīng)網(wǎng)絡(luò)與大腦實際工作原理之間存在一定的分歧。我認(rèn)為它們現(xiàn)在走的是不同的道路。
Q:那么我們現(xiàn)在還沒有采取正確的方法?
A:這是我的個人觀點。
Q:但所有大型模型現(xiàn)在都使用一種叫做反向傳播的技術(shù),而這種技術(shù)是您幫助推廣的。
A:我認(rèn)為大腦并不是在做這個。 有兩條通往智能的不同道路。一條是生物學(xué)途徑,另一條是我們所擁有的模擬硬件途徑。我們必須用自然語言進行溝通,還要向人們展示如何做事情,模仿等。
但我們在交流方面做得很糟糕,與現(xiàn)在運行在數(shù)字計算機上的計算機模型相比,我們的交流能力差得多。計算機模型之間的溝通帶寬非常大,因為它們是相同模型的克隆,運行在不同的計算機上。
正因為如此,它們可以查看大量的數(shù)據(jù),因為不同的計算機可以查看不同的數(shù)據(jù),然后它們結(jié)合了它們所學(xué)到的東西,遠遠超出了任何人能夠理解的范圍。盡管如此,我們?nèi)匀槐人鼈兟斆鳌?
Q:所以它們就像是天才白癡嗎?
A:對,ChatGPT 知道的比任何一個人都多。如果有一個關(guān)于知識量的比賽,它會輕松擊敗任何一個人。它在智力競賽中表現(xiàn)出色,可以寫詩,但在推理方面并不擅長。我們在推理方面做得更好。我們必須從更少的數(shù)據(jù)中提取我們的知識。
我們有 100 萬億個連接,其中大部分是通過學(xué)習(xí)得到的,但我們只活了十億秒,這并不算很長的時間。像 ChatGPT 這樣的東西,它們在許多不同的計算機上運行了比我們更長的時間,吸收了所有這些數(shù)據(jù)。
Q:1986 年,您在《自然》雜志上發(fā)表了一篇文章,提出了一個想法:我們將擁有一個由單詞組成的句子,并預(yù)測最后一個單詞。
A:是的,那是第一個語言模型,基本上就是我們現(xiàn)在在做的事情。1986 年是很久以前的事情了。
Q:為什么那時候人們還沒有說「哦,好吧,我認(rèn)為他找到了方法」?
A:因為那時候,如果你問我用多少數(shù)據(jù)訓(xùn)練了那個模型,我有一個簡單的家庭關(guān)系模型,有 112 個可能的句子,我用其中的 104 個進行了訓(xùn)練,然后檢查它是否正確預(yù)測了最后 8 個。
它在預(yù)測最后 8 個方面表現(xiàn)得相當(dāng)好,比符號 AI 更好。問題是那時候的計算機還不夠強大。現(xiàn)在的計算機速度快了數(shù)百萬倍,可以進行數(shù)百萬倍的計算。我做了一個小計算,如果我拿 1986 年的計算機去學(xué)習(xí)一些東西,它現(xiàn)在仍在運行,但還沒有完成。現(xiàn)在,學(xué)習(xí)這些東西只需要幾秒鐘。
Q:你知道這是你的制約因素嗎?
A:我并不知道,但我相信那可能是我們的制約因素。但人們對這樣的說法嗤之以鼻,好像這是一個借口:「如果我有更大的計算機和更多的數(shù)據(jù),一切都會好起來。現(xiàn)在它不起作用是因為我們沒有足夠的數(shù)據(jù)和計算能力。」 這種觀點被當(dāng)作對事物無法正常運作的一種狡辯。
Q:在 90 年代從事這項工作很困難嗎?
A:在 90 年代,計算機在不斷發(fā)展,但是那時確實有其他學(xué)習(xí)技術(shù),在小型數(shù)據(jù)集上表現(xiàn)得和神經(jīng)網(wǎng)絡(luò)一樣好,而且更容易解釋,背后有更為復(fù)雜的數(shù)學(xué)理論。
所以,在計算機科學(xué)領(lǐng)域,人們對神經(jīng)網(wǎng)絡(luò)失去了興趣。但在心理學(xué)領(lǐng)域,他們?nèi)匀粚ι窠?jīng)網(wǎng)絡(luò)感興趣,因為心理學(xué)家對人類可能如何學(xué)習(xí)感興趣,這些其他技術(shù)甚至比反向傳播還不合理。
Q:這是您背景的一個有趣部分,您之所以投身于這個領(lǐng)域,并非因為對計算機感興趣,而是因為對大腦感興趣。
A:是的,我原本對心理學(xué)感興趣,后來我決定,如果不了解大腦,我們永遠無法理解人類。在 70 年代,有一種時髦的觀點認(rèn)為,你可以在不關(guān)心大腦的情況下做到這一點,但我覺得那是不可能的。你必須了解大腦是如何運作的。
Q:現(xiàn)在我們快進到 2000 年代,您回顧過去,是否認(rèn)為有一個關(guān)鍵時刻,當(dāng)時您覺得我們這一方將在這場爭論中獲勝?
A:大約在 2006 年,我們開始做所謂的深度學(xué)習(xí)。在那之前,讓具有多層表示的神經(jīng)網(wǎng)絡(luò)學(xué)會復(fù)雜事物一直很困難。我們找到了更好的方法來實現(xiàn)這一點,更好的初始化網(wǎng)絡(luò)的方法,稱為預(yù)訓(xùn)練。
在 ChatGPT 中,P 代表預(yù)訓(xùn)練。T 代表變換器,G 代表生成。實際上,是生成模型為神經(jīng)網(wǎng)絡(luò)提供了更好的預(yù)訓(xùn)練方法。2006 年時,這個理念的種子已經(jīng)埋下,到了 2009 年,我們已經(jīng)研發(fā)出了比最好的語音識別器更好的東西,用與其他所有語音識別器不同的技術(shù)識別您說的哪個音素。
Q:那么 2012 年發(fā)生了什么大事呢?
A:實際上 2012 年發(fā)生了兩件大事。其中一項研究始于 2009 年,是由我的兩名學(xué)生在暑假進行的,他們的研究成果導(dǎo)致了語音識別的改進。
這項技術(shù)被推廣到了微軟、IBM 和 Google 等大型語音識別實驗室。2012 年,Google 首次將其應(yīng)用于產(chǎn)品,突然之間,安卓上的語音識別變得跟 Siri 一樣好,甚至更好。這是深度神經(jīng)網(wǎng)絡(luò)在語音識別領(lǐng)域的一個應(yīng)用,比以前提前了三年。
在那個時間點的幾個月內(nèi),我的另外兩名學(xué)生開發(fā)了一個物體識別系統(tǒng)。該系統(tǒng)可以查看圖像,告訴你圖像中的物體是什么,效果比以前的系統(tǒng)好得多。
這個系統(tǒng)是怎么工作的呢?有一個人叫李飛飛,和她的合作者創(chuàng)建了一個大型圖像數(shù)據(jù)庫,包含了 1000 個不同類別的 100 萬張圖像。你需要查看一張圖像,并對圖像中的主要物體進行最好的猜測。
所以,這些圖像通常會在中間有一個物體,比如子彈頭火車或者哈士奇之類的東西。其他系統(tǒng)的錯誤率是 25%,而我們的錯誤率是 15%。幾年之后,15% 的錯誤率降到了 3%,這已經(jīng)接近人類水平了。
讓我試著解釋一下,讓人們理解他們的方法與其他團隊的方法之間的區(qū)別。假設(shè)你想在圖像中識別一只鳥。圖像本身,假設(shè)是 200x200 的圖像,有 200x200 個像素,每個像素有三個顏色值 RGB。所以你在計算機里有 200x200x3 個數(shù)字,就是計算機里的數(shù)字。
任務(wù)是將這些數(shù)字轉(zhuǎn)換成一個表示鳥的字符串。50 年來,標(biāo)準(zhǔn) AI 領(lǐng)域的人們一直試圖做到這一點,但沒有成功。將一堆數(shù)字轉(zhuǎn)換成一個表示鳥的標(biāo)簽是很棘手的。
你可以這樣做:首先,你可以制作特征檢測器,檢測像素的小組合。然后在下一級別,你可能會說,假設(shè)我有 22 個邊緣檢測器,它們以一個細(xì)角相連,那可能就是一只喙。然后在更高的層次上,我們可能有一個探測器,它會說,嘿,我找到了這個類似喙的東西,還找到了一個圓形的東西,它們在空間關(guān)系上大致是一只鳥的眼睛和喙。
所以下一個級別,你會有一個鳥類探測器,它會說,如果我看到這兩個特征,我認(rèn)為這可能是一只鳥。
你可以想象通過手動連接這些特征檢測器。而反向傳播的思想就是在一開始隨機設(shè)置連接權(quán)重,然后根據(jù)預(yù)測結(jié)果調(diào)整權(quán)重。如果預(yù)測出現(xiàn)錯誤,那么你就通過網(wǎng)絡(luò)反向計算,并提出以下問題:我應(yīng)該如何改變這個連接強度,使其更不容易說出錯誤答案,更容易說出正確答案?這稱為誤差或差異。
然后,你要計算每個連接強度如何進行微調(diào),使其更容易得出正確答案,更不容易得出錯誤答案。
一個人會判斷這是一只鳥,然后將標(biāo)簽提供給算法。但是反向傳播算法只是一種計算方法,用于確定如何改變每個連接強度,使其更容易說鳥,更不容易說貓。
算法會不斷嘗試調(diào)整權(quán)重。現(xiàn)在,如果你展示足夠多的鳥和貓,當(dāng)你展示一只鳥時,它會說鳥;當(dāng)你展示一只貓時,它會說貓。事實證明,這種方法比手動連接特征檢測器要有效得多。
這就是我的學(xué)生在圖像數(shù)據(jù)庫上所做的事情。他們讓這個系統(tǒng)工作得非常好。這些學(xué)生非常聰明,事實上,其中一名學(xué)生,他是 ChatGPT 背后的主要人物之一。那是人工智能的一個巨大時刻,他實際上參與了這兩個項目。
你可以想象,當(dāng)你調(diào)整這個小旋鈕時,它會說出「鳥」,這感覺就像是一個驚人的突破。這主要是因為計算機視覺領(lǐng)域的其他人認(rèn)為,這些神經(jīng)網(wǎng)絡(luò)只適用于簡單的任務(wù),例如識別手寫數(shù)字,但這并不是真正復(fù)雜的圖像,具有自然背景等。他們認(rèn)為這種方法永遠不會適用于這些大型復(fù)雜圖像,但突然之間,這種方法就成功了。
值得稱道的是,那些曾經(jīng)堅定反對神經(jīng)網(wǎng)絡(luò)的人,當(dāng)看到這種方法成功時,他們做了科學(xué)家通常不會做的事情,也就是說:「哦,它有效,我們會采用這個方法。」人們認(rèn)為這是一個巨大的轉(zhuǎn)變。因為他們看到這種方法比他們正在使用的方法更有效,所以他們很快就改變了立場。
當(dāng)人們既在思考機器,也在思考我們自己的思維方式時,我們常常認(rèn)為,輸入是語言,輸出是語言,那么中間一定也是語言。這是一個重要的誤解。
實際上,這種觀點并不正確。如果這是真的,那么被稱為符號人工智能的方法應(yīng)該非常擅長進行機器翻譯,比如把英語轉(zhuǎn)換成法語。你會認(rèn)為操作符號是實現(xiàn)這一目標(biāo)的正確方法。但實際上,神經(jīng)網(wǎng)絡(luò)的效果更好。當(dāng) Google 翻譯從使用符號方法轉(zhuǎn)向神經(jīng)網(wǎng)絡(luò)時,效果大大提高了。
我認(rèn)為,在中間的部分,你會發(fā)現(xiàn)有數(shù)百萬個神經(jīng)元,它們中的一些是活躍的,一些則不是。符號只能在輸入和輸出處找到,而不是在整個過程中。
現(xiàn)在,我們在多倫多大學(xué)附近,雖然并非在多倫多大學(xué)里,但在這里和世界各地的大學(xué)里,我們教育了很多人學(xué)習(xí)編碼。教這么多人編碼是否仍然有意義呢?我不知道答案是什么。
在 2015 年左右,我曾經(jīng)聲稱,在未來五年內(nèi),計算機將在圖像識別方面超越放射科醫(yī)生,因此教他們識別圖像中的東西已經(jīng)沒有意義了。事實證明,我的預(yù)測錯誤了,實際上需要 10 年,而不是 5 年。
在精神層面上,我并沒有錯,只是時間預(yù)測出了差錯。計算機現(xiàn)在在很多醫(yī)學(xué)圖像識別方面與放射科醫(yī)生相當(dāng),盡管它們還沒有在所有方面做得更好,但它們只會變得更好。
因此,我認(rèn)為有一段時間,我們?nèi)匀恍枰幋a人員。我不知道這段時間會有多長,但我們需要的編碼人員會減少。或者,我們可能需要相同數(shù)量的編碼人員,但他們將能夠?qū)崿F(xiàn)更多的成果。
Q:我們在這里談?wù)摰氖且患页鮿?chuàng)公司,昨天我們拜訪了他們。你是他們的投資者,那么,什么是說服你的投資理由呢?
A:首先,他們是好人,我曾與其中的幾位合作過。其次,他們是第一批意識到需要將 Google、OpenAI 等地開發(fā)的大型語言模型帶給企業(yè)的公司。這對公司來說將非常有價值,因此,他們一直在努力實現(xiàn)這一目標(biāo),而且在這方面取得了領(lǐng)先地位。 所以,我認(rèn)為他們會成功的。
Q:你曾經(jīng)提到過一個我覺得非常有趣的觀點,那就是未來可能會有一種新型計算機,專門解決這個問題。這個觀點是什么?
A:我們有兩種途徑來理解智能:一種是生物途徑,其中每個大腦都是不同的,我們需要通過語言來在不同的大腦之間傳遞知識;另一種是目前的 AI 神經(jīng)網(wǎng)絡(luò)版本,你可以在不同的計算機上運行相同的模型,實際上它們可以共享連接權(quán)重,因此它們可以共享數(shù)十億個數(shù)字。
這就是我們?nèi)绾巫屢恢圾B跳舞的。它們可以共享識別鳥的所有連接權(quán)重,一個可以學(xué)會識別貓,另一個可以學(xué)會識別鳥,它們可以共享它們的連接權(quán)重,這樣每個模型都可以做兩件事。
這正是這些大型語言模型所做的,它們在共享。但這種方法只適用于數(shù)字計算機,因為它們必須能夠模擬相同的事物。而不同的生物大腦無法相互模擬,因此它們無法共享連接。
Q:為什么我們不堅持使用數(shù)字計算機呢?
A:因為電力消耗。你需要很多電力。雖然隨著芯片的改進,電力需求在減少,但運行數(shù)字計算機仍然需要大量的電力。你必須讓計算機以高電力運行,以便它能夠精確地以正確的方式工作。
然而,如果你愿意讓計算機以較低的電力運行,比如大腦所做的那樣,你會允許一些噪聲等,但特定系統(tǒng)會適應(yīng)該特定系統(tǒng)中的噪聲,整個系統(tǒng)將正常工作,盡管你沒有以如此高的電力運行它以便它能精確地按照你的意圖進行工作。
大腦的運行功率是 30 瓦,而大型 AI 系統(tǒng)需要像兆瓦這樣的功率。所以我們在 30 瓦上進行訓(xùn)練,而大型系統(tǒng)則使用兆瓦,它們有很多相同的東西。所以你知道,我們在談?wù)摴β市枨蠓矫娴?1000 倍差距。
因此,我認(rèn)為會有一個階段,我們會在數(shù)字計算機上進行訓(xùn)練,但一旦某個 AI 系統(tǒng)訓(xùn)練完畢, 我們會將其運行在非常低功耗的系統(tǒng)上。所以,如果你想讓你的烤面包機能和你對話,你需要一個只花費幾美元的芯片,而且它能運行像 ChatGPT 這樣的程序,那么最好是一個低功耗和低芯片。
Q:你認(rèn)為接下來這項技術(shù)將做些什么,以影響人們的生活?
A:很難選一個。我認(rèn)為這將無處不在。它已經(jīng)開始無處不在了,ChatGPT 只是讓很多人意識到了這一點。它將無處不在。但實際上,當(dāng) Google 進行搜索時,它會使用大型神經(jīng)網(wǎng)絡(luò)來幫助決定向你展示什么最佳結(jié)果。我們現(xiàn)在正處于一個過渡點,其中 ChatGPT 像一個「白癡天才」,它也并不真正了解事實真相。
它接受了大量不一致的數(shù)據(jù)訓(xùn)練,試圖預(yù)測下一個網(wǎng)絡(luò)用戶會說什么。人們對很多事情有不同的觀點,而它必須有一種混合所有這些觀點的方式,以便可以模擬任何人可能說的話。這與一個試圖擁有一致世界觀的人非常不同,特別是如果你想在世界上采取行動,擁有一致的世界觀是非常有益的。
我認(rèn)為接下來會發(fā)生的一件事是,我們將朝著能夠理解不同世界觀的系統(tǒng)發(fā)展,并且能夠理解,好吧,如果你有這個世界觀,那么這就是答案。而如果你有另一個世界觀,那么答案就是另一個。我們得到我們自己的真相。
Q:那么這個問題是不是因為,你和我可能都相信(除非你是一個極端的相對主義者),實際上在很多話題上,甚至在大多數(shù)話題上,確實存在一個事實真相,比如地球?qū)嶋H上并不是平的,只是看起來平而已,對吧?
A:是的,所以我們真的想要一個模型說,好吧,對某些人來說,我們不知道嗎?這將是一個巨大的問題,我們目前還不知道如何處理。目前我并不認(rèn)為微軟知道如何處理這個問題。他們也不知道。
這似乎是一個巨大的治理挑戰(zhàn)。誰來做這些決策?這是非常棘手的事情。你可不希望某個大型盈利公司來決定什么是真實的。但他們正在控制我們?nèi)绾问褂眠@些東西。Google 目前非常小心,不要那樣做。Google 會做的是將你引向相關(guān)文件,這些文件中會有各種各樣的觀點。
Q:那么他們還沒有發(fā)布他們的聊天產(chǎn)品,至少在我們談話的時候還沒有,對吧?
A:是的,但我們已經(jīng)看到,至少那些已經(jīng)發(fā)布聊天產(chǎn)品的人覺得有些事情他們不希望用他們的聲音說出來,所以他們會去干預(yù)它,以免說出冒犯人的話。
是的,但這種方式你能做的事情是有限的。總會有你想不到的事情,對吧?是的。所以我認(rèn)為 Google 在發(fā)布聊天機器人時會比微軟更謹(jǐn)慎,并且它可能會附帶很多警告,這只是一個聊天機器人,不要一定相信它所說的。
在標(biāo)簽上小心,或者在干預(yù)方式上小心,以免做出糟糕的事情。所有這些方面都要小心。在如何將其作為產(chǎn)品呈現(xiàn)以及如何進行訓(xùn)練方面要小心。是的。并努力防止它說出不好的東西。但是,誰來決定什么是壞事呢?有些壞事是相當(dāng)明顯的,但是很多最重要的事情并不是那么明顯。所以,目前這是一個很大的懸而未決的問題。我認(rèn)為微軟發(fā)布 ChatGPT 是非常勇敢的。
Q:你是否認(rèn)為這是一個更大的社會問題,我們需要監(jiān)管或大規(guī)模公共辯論來處理這些問題?
A:像我說的,我不知道答案,而且我不相信有人真的知道如何處理這些問題。我們必須學(xué)會如何快速處理這些問題,因為這是一個當(dāng)前的大問題。但是,關(guān)于如何完成這件事,我不知道,但我懷疑,作為第一步,至少這些大型語言模型必須了解到,存在不同的觀點,以及它所作出的補充是相對于一個觀點的。
Q:有些人擔(dān)心,這可能會很快蔓延開來,我們可能無法為此做好準(zhǔn)備。這讓你擔(dān)憂嗎?
A:確實有點。直到不久前,我認(rèn)為在我們擁有通用人工智能之前還需要 20 到 50 年的時間。 而現(xiàn)在我認(rèn)為可能是 20 年或更短時間。有些人認(rèn)為可能只有 5 年,那是荒謬的。但現(xiàn)在我不會完全排除這種可能性,而幾年前,我會說絕不會發(fā)生這種情況。
Q:有人說 AI 可能對人類構(gòu)成巨大危險,因為我們不知道一個比我們聰明得多的系統(tǒng)會做什么。你是否也有這種擔(dān)憂?
A:我確實有點擔(dān)憂。顯然,我們需要做的是使這種技術(shù)與人類互補,讓它幫助人們。我認(rèn)為這里的主要問題之一是我們所擁有的政治體系。即使說美國、加拿大和一群國家表示,好的,我們將建立這些防護欄,那么你如何保證呢?
特別是對于像自主致命武器這樣的事物,我們希望有類似日內(nèi)瓦公約的東西,像化學(xué)武器一樣。人們認(rèn)為這些武器是如此惡心,以至于他們不再使用它們,除非有充分理由。但我認(rèn)為,基本上他們不再使用這些武器。人們希望為自主致命武器達成類似的協(xié)議,但我認(rèn)為他們不太可能達成這樣的協(xié)議。
Q:這是這個問題最尖銳的版本,你可以笑它,也可以不回答,但是你認(rèn)為 AI 消滅人類的幾率是多少?我們能否對此給出一個數(shù)字?
A:這個幾率介于 0% 和 100% 之間。我認(rèn)為這并非不可能。就我所說,如果我們明智的話,我們會努力發(fā)展它,以免發(fā)生這種情況。但是,令我擔(dān)憂的是政治局勢。
確保每個人都明智行事是一個巨大的政治挑戰(zhàn)。這似乎是一個巨大的經(jīng)濟挑戰(zhàn),因為你可能會有很多個體追求正確的道路,然而,公司的利潤動機可能不會像為他們工作的個體那樣謹(jǐn)慎。
也許吧,我只真正了解 Google,這是我唯一的工作公司。他們一直是最謹(jǐn)慎的公司之一。他們對 AI 非常謹(jǐn)慎,因為他們有一個提供你想要的答案的出色搜索引擎。他們不想損害它。 而微軟則不太關(guān)心這個問題。如果搜索消失了,微軟可能都不會注意到。當(dāng)沒有人追趕他們的時候,Google 采取緩慢的策略是容易的。
Google 一直處于領(lǐng)先地位。Transformers 是在 Google 發(fā)明的,大型語言模型的早期版本也是在 Google。
Q:是的,他們抓住了這個機會。
A:他們更加保守,我認(rèn)為這是正確的。但現(xiàn)在他們感受到了壓力。所以他們正在開發(fā)一個名為「Bart」的系統(tǒng),他們將發(fā)布該系統(tǒng)。他們正在對它進行大量的測試,但我認(rèn)為他們會比微軟更謹(jǐn)慎。
Q:你提到了自主武器。讓我給你一個機會來講述這個故事。你是如何來到加拿大的,這與你的選擇有什么關(guān)系?
A:有好幾個原因讓我來到了加拿大,其中一個原因確實是不想從美國國防部那里拿錢。那時正值里根總統(tǒng)執(zhí)政,他們正在尼加拉瓜的港口布雷。有趣的是,我當(dāng)時在匹茲堡的一個大學(xué),我是那里為數(shù)不多的認(rèn)為在尼加拉瓜港口布雷是非常錯誤的人之一。所以我覺得自己像是異類。
Q:你看到這種類型的工作是如何獲取資金的嗎?
A:在那個部門,幾乎所有的資金都來自美國國防部。
Q:你開始談?wù)搶⑦@項技術(shù)應(yīng)用于戰(zhàn)爭可能帶來的問題,你擔(dān)憂什么?
A:噢,我擔(dān)心美國人會試圖用 AI 士兵替換他們的士兵,他們正朝著這個方向努力。
Q:你看到了什么證據(jù)?
A:我在美國國防部的一個郵件列表上。我不確定他們知不知道我在郵件列表上,這是一個很大的名單,他們沒有注意到我在那里。
Q:名單上有什么?
A:哦,他們只是描述了他們打算做的各種事情,上面有一些令人作嘔的東西。
Q:讓你感到惡心的是什么?
A:讓我感到惡心的是一個關(guān)于自愈雷區(qū)的提議。這個想法是從雷區(qū)的角度來看,當(dāng)一些無知的平民闖入雷區(qū)時,他們會被炸死,導(dǎo)致雷區(qū)出現(xiàn)空缺,使得雷區(qū)無法完全發(fā)揮作用。所以他們提出讓附近的地雷進行通信,也許地雷可以稍微移動一下來彌補空缺,他們稱之為自愈。而討論這種自愈的想法,對于那些會炸斷孩子雙腿的地雷來說,實在令人作嘔。
Q:有人認(rèn)為,盡管自主系統(tǒng)可能在某種程度上幫助戰(zhàn)斗員,但最終決策仍然是由人類做出的。你擔(dān)心什么?
A:如果你想制造一種高效的自主士兵,你需要賦予它創(chuàng)造子目標(biāo)的能力。換句話說,它必須意識到類似的事情,比如:「好吧,我想殺死那個人,但是要過去,我該怎么辦?」然后它必須意識到,如果能到達那條道路,可以更快地到達目標(biāo)地點。所以,它有一個到達道路的子目標(biāo)。
一旦你賦予它創(chuàng)造子目標(biāo)的能力,它就會變得更有效。像普京這樣的人會希望擁有這樣的機器人。但是,一旦它具備了創(chuàng)造子目標(biāo)的能力,你就會遇到所謂的「對齊問題」,即如何確保它不會創(chuàng)造對人類或你自己不利的子目標(biāo)。誰知道那條路上會有什么人?誰知道會發(fā)生什么?
Q:如果這些系統(tǒng)是由軍方研發(fā)的,那么將一條「永遠不要傷害人類」的規(guī)則植入其中的想法,恐怕并不現(xiàn)實,因為它們本就是設(shè)計用來傷害人類的。你看到這個問題有什么解決辦法嗎?是條約還是什么?
A:我認(rèn)為最好的辦法是類似于《日內(nèi)瓦公約》的東西,但這將非常困難。我覺得如果有大量的公眾抗議,那么可能會說服政府采取行動。我可以想象,在足夠的公眾抗議下,政府可能會采取某些行動。但是,你還需要應(yīng)對其他人。
Q:是的,確實如此。好的,我們已經(jīng)談了很多。我想我還有兩個問題。還有一個問題我想問一下。
A:好的,你問吧。
Q:有人說這些大型模型只是自動補全,這種說法對嗎?
A:從某種程度上來說,這些模型確實是自動補全。我們知道這些大型語言模型只是預(yù)測下一個詞。這并不簡單,但確實如此。它們只是預(yù)測下一個詞,所以它們只是自動補全。但是,問問自己一個問題:要準(zhǔn)確預(yù)測下一個詞,你需要了解到目前為止所說的內(nèi)容。
基本上,你必須理解已經(jīng)說過的話來預(yù)測下一個詞。所以你也是自動補全,只不過與它們一樣。你可以預(yù)測下一個詞,雖然可能不如 ChatGPT 那么準(zhǔn)確,但為了做到這一點,你必須理解句子。
讓我舉一個關(guān)于翻譯的例子。這是一個非常具有說服力的例子。假設(shè)我要把這句話翻譯成法語:「獎杯太大了,它放不進行李箱。」當(dāng)我說這句話時,你會認(rèn)為「它」指的是獎杯。在法語中,獎杯有特定的性別,所以你知道該用什么代詞。但如果我說:「獎杯放不進行李箱,因為它太小了。」
現(xiàn)在你認(rèn)為「它」指的是行李箱,對吧?在法語中,行李箱的性別也不同。所以為了把這句話翻譯成法語,你必須知道,當(dāng)它放不進去是因為太大時,是獎杯太大;而當(dāng)它放不進去是因為太小時,是行李箱太小。這意味著你必須了解空間關(guān)系和容納等概念。
為了進行機器翻譯或預(yù)測那個代詞,你必須理解所說的內(nèi)容。僅僅把它當(dāng)作一串單詞是不夠的。
Q:你在這個領(lǐng)域的工作經(jīng)歷比任何人都長,你描述進展就像是「我們有了這個想法,嘗試了一下,然后它奏效了。」所以我們有了幾十年的反向傳播,我們有了 Transformer 這個想法,但還有數(shù)百種其他想法還沒有嘗試。
A:是的, 我認(rèn)為即使我們沒有新的想法,只是讓計算機運行得更快、獲取更多數(shù)據(jù),這些東西也會變得更好。
我們已經(jīng)看到,隨著 ChatGPT 規(guī)模的擴大,使其更優(yōu)秀的并不是全新的想法,而是更多的連接和更多的訓(xùn)練數(shù)據(jù)。但除此之外,還會有像變換器這樣的新想法,它們將使其運作得更好。
Q:我們離讓計算機自己想出改進自己的方法還有多遠?
A:呃,我們可能很接近了。然后它可能會變得非常快。這是一個問題,對吧?我們必須認(rèn)真思考如何控制這一點。
Q:是的,我們能做到嗎?
A我們不知道,我們還沒有到那個地步,但我們可以嘗試。
Q:好吧,這似乎有點令人擔(dān)憂。作為這個行業(yè)的教父,你是否對你帶來的這些成果感到擔(dān)憂?
A:有一點。另一方面,我認(rèn)為不論發(fā)生什么,這幾乎都是不可避免的。換句話說,一個人停止研究不會阻止這種情況的發(fā)生。如果我的影響只是讓它提前一個月發(fā)生,那么這就是一個人所能做的極限了。有這個想法,我可能說錯了,那就是短跑道和長起飛。
Q:也許我們需要時間準(zhǔn)備,或者也許如果它發(fā)生得很快,那么人們會在問題上感到緊迫,而不是像現(xiàn)在這樣慢慢發(fā)展。你對此有什么看法?
A:我認(rèn)為有時間準(zhǔn)備是好的。所以我認(rèn)為,現(xiàn)在就擔(dān)心這些問題是非常合理的,盡管在接下來的一兩年內(nèi)不會發(fā)生。人們應(yīng)該思考這些問題。
Q:我們還沒有談到工作崗位的替代,這是我的疏忽,對不起。這個技術(shù)是否會不斷吞噬工作,一個接一個?
A:我認(rèn)為它將使工作不同, 人們將從事更有創(chuàng)造性的工作,而較少從事例行工作。
Q:那么如果它可以評價詩歌和制作電影,還有什么工作算什么有創(chuàng)造性的工作?
A:如果你回顧歷史,看看自動取款機,這些現(xiàn)金機出現(xiàn)時,人們說這是銀行柜員的終結(jié)。但實際上,它并沒有終結(jié)銀行柜員的職位。現(xiàn)在銀行柜員處理更復(fù)雜的事情,并且需要編碼人員。
所以人們說,這些工具可以進行簡單的編碼,并且通常能夠正確地執(zhí)行,你只需要讓它編寫程序,然后檢查它,這樣你就能夠快速工作 10 倍。你可以只用 10% 的程序員,或者你可以使用相同數(shù)量的程序員,生產(chǎn) 10 倍的東西。
我認(rèn)為會有很多這樣的例子,一旦這些工具開始有創(chuàng)造性,就會創(chuàng)造出更多的東西。這是自工業(yè)革命以來最大的技術(shù)進步。
Q:這是另一次工業(yè)革命嗎?這是什么?人們應(yīng)該如何看待它?
A:我認(rèn)為它在規(guī)模上與工業(yè)革命、電力、甚至是輪子的發(fā)明相當(dāng)。我在人工智能方面取得了領(lǐng)先地位有一個原因,那是因為加拿大授予機構(gòu)的政策。這些機構(gòu)沒有很多錢,但他們利用其中的一些資金來支持出于好奇心的基礎(chǔ)研究。在美國,資金是必須聲明你將會生產(chǎn)什么產(chǎn)品的。
在這里,一些政府資金 —— 相當(dāng)多的資金,是給教授的,讓他們雇用研究生和其他研究人員探索他們感興趣的事物。如果他們在這方面表現(xiàn)出色,那么三年后他們會獲得更多的資金。這就是支持我的資金,是基于出于好奇心的基礎(chǔ)研究的資金。我們之前也看到過這種情況,即使幾十年來沒有能夠展示出太多的成果。
另一個發(fā)生的事情是,有一個叫做「加拿大高等研究所」的組織,為加拿大擅長的領(lǐng)域的教授提供額外的資金,并為分布在不同地方的教授提供相互交流的資金,例如溫哥華和多倫多,也與美國、英國和以色列等其他地區(qū)的研究人員互動。CFR 在人工智能領(lǐng)域設(shè)立了一個項目,最初是在 20 世紀(jì) 80 年代建立的,這是將我?guī)У郊幽么蟮捻椖浚菚r是基于符號的人工智能。
Q:哦,我知道了,你是怎么來的?
A:我很奇怪,有點不尋常,因為我做了一些大家都認(rèn)為是無意義的東西,但他們認(rèn)識到我擅長這種「無意義」的東西,所以如果有人要做這種東西,那一定是我。
我的一封推薦信寫道:「你知道我不相信這些東西,但如果你想找一個人來做這個,就找 Geoffrey 吧。」在那個項目結(jié)束后,我回到英國待了幾年,然后回到加拿大,他們決定資助一個基于深度學(xué)習(xí)的項目。
Q:我認(rèn)為你對「感知」的定義也有一些不滿意,對嗎?
A:是的,當(dāng)涉及到「感知」的時候,我很驚訝人們會自信地宣稱這些東西是沒有感知的。當(dāng)你問他們「感知」的意思是什么時,他們會說他們不太清楚。那么如果你不知道「感知」的意思,你怎么能自信地說它們沒有感知呢?所以也許它們已經(jīng)有感知了,誰知道呢。
我認(rèn)為它們是否有感知取決于你對「感知」的定義,所以你最好在回答這個問題之前先定義一下你對「感知」的理解。我們認(rèn)為它是否有感知重要嗎,還是只關(guān)注它是否能有效地表現(xiàn)出有感知的狀態(tài)?
Q:這是一個非常好的問題,很重要。那你的答案是什么?
A:我沒有答案。好吧,因為如果它沒有感知,但出于某種原因它認(rèn)為它有感知,并且它需要實現(xiàn)與我們利益相悖的目標(biāo),但它相信它符合自己的利益,那么這真的很重要嗎?我認(rèn)為一個很好的例子可以想到的是一種自主的致命武器。說它沒有感覺這也對,但是當(dāng)它在追逐你并射擊你時,你會開始認(rèn)為它有感覺。
我們并不真的關(guān)心,這不再是一個重要的標(biāo)準(zhǔn)了。我們正在開發(fā)的這種智能與我們的智能非常不同,它是某種伺候無知者的工具,它和我們不一樣。
Q:但是你的目標(biāo)是讓它更像我們,你認(rèn)為我們會實現(xiàn)這個目標(biāo)嗎?
A:不是,我的目標(biāo)是理解我們。我認(rèn)為理解我們的方式是通過構(gòu)建像我們一樣的東西。我說過的那位物理學(xué)家理查德?費曼曾經(jīng)說過,你不能理解一件事情,除非你能夠構(gòu)建它。
Q:所以你一直在構(gòu)建。
A:所以我一直在構(gòu)建。

有些產(chǎn)品,需要展開說說

蘋果 Siri 團隊內(nèi)幕曝光:掙扎、斗爭、重組

關(guān)鍵詞:

版權(quán)聲明:
    凡注明來網(wǎng)絡(luò)消費網(wǎng)的作品,版權(quán)均屬網(wǎng)絡(luò)消費網(wǎng)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明"來源:網(wǎng)絡(luò)消費網(wǎng)"。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
    除來源署名為網(wǎng)絡(luò)消費網(wǎng)稿件外,其他所轉(zhuǎn)載內(nèi)容之原創(chuàng)性、真實性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考并自行核實。
熱文

網(wǎng)站首頁 |網(wǎng)站簡介 | 關(guān)于我們 | 廣告業(yè)務(wù) | 投稿信箱
 

Copyright © 2000-2020 www.xnbt.net All Rights Reserved.
 

中國網(wǎng)絡(luò)消費網(wǎng) 版權(quán)所有 未經(jīng)書面授權(quán) 不得復(fù)制或建立鏡像
 

聯(lián)系郵箱:920 891 263@qq.com

備案號:京ICP備2022016840號-15

營業(yè)執(zhí)照公示信息

主站蜘蛛池模板: 日产精品卡2卡三卡乱码网址| 波多野结衣系列无限发射| 久久国产精品免费一区二区三区| 亚洲天天做日日做天天欢毛片| 2022国产麻豆剧果冻传媒影视| 波多野结衣中文字幕一区二区三区| 欧美乱妇在线观看| 一个人hd高清在线观看免费直播| 中文字幕在线播放视频| 亚洲一区电影在线观看| 国产福利影院在线观看| 男人下面进女人下面视频免费| 天天干天天干天天干| аⅴ中文在线天堂| 欧美高清xxx| 女m羞辱调教视频网站| a级毛片免费观看网站| 香港黄色碟片黄色碟片| 国产一级片观看| 里番本子侵犯肉全彩3d| 日韩美女hd高清电影| 欧美69影院| 波多野结衣教师中文字幕| 亚洲毛片免费观看| 波多野结衣同性| a级毛片视频| 国产亚洲情侣一区二区无| bwbwbwbwbwbw精彩| 国产大片中文字幕在线观看| 绿巨人晚上彻底放飞自己| 麻豆91在线视频| 亚洲欧美日韩久久精品第一区| 55爱爱网| 美女跪下吃j8羞羞漫画| 中文字幕亚洲综合久久菠萝蜜 | 天天综合网天天综合色| 四虎影视永久地址四虎影视永久地址www成人 | 男男污| 在线中文字幕不卡| 妞干网手机视频| 国产丰满麻豆videossexhd|